Организм человека подобен часам: стрелки постоянно бегут вперёд, мы стареем. Механизм этих часов очень сложен, но биологам удалось разобраться в некоторых принципах его работы. Например, они уже научились замедлять процесс старения клетки и возвращать её в «младенческое состояние». А как насчёт того, чтобы омолодить целый организм?
Прежде чем разбираться в процессе омоложения, попытаемся понять, что такое старение. Обычно под старением понимают процесс, при котором постепенно нарушаются и теряются важные функции организма, в том числе способность к размножению и регенерации. Относительно причин старения выдвигаются различные гипотезы, которые можно разделить на две группы. Приверженцы первой утверждают, что процесс обусловлен некой программой, заложенной эволюцией, причём эту программу можно замедлить или сломать. Приверженцы второй группы возражают: никакой специальной программы не существует, однако со временем накапливаются повреждения и поломки во всех структурах организма, что и приводит к старению.
Вне зависимости от правоты тех или других, процессы старения одинаковы для всех. Так, со временем в ДНК возникают мутации, хуже регулируется экспрессия генов, в клетках накапливаются агрегаты повреждённых белков и липидов. Кроме того, реже происходит деление клеток, и свои функции они выполняют менее эффективно, что в свою очередь ведёт к замедлению регенерации органов, уменьшению мышечной массы, ослаблению иммунитета, снижению умственных способностей и пр. Перечисленные изменения — всего лишь малая толика всех, не слишком приятных процессов, которые происходят в стареющем организме. Список этих физиологических проблем наводит на невесёлые размышления. Но сотни исследователей по всему миру трудятся над возвращением молодости. И, надо сказать, достигли некоторых успехов.
Продлить молодость и… начать сначала
Одним из немаловажных успехов биологов было увеличение продолжительности жизни лабораторных животных — круглого червя Caenorhabditis elegans, мушки Drosophila melanogaster и мыши Mus musculus. Использовали два подхода: искусственно вызванные мутации в определённых генах и специальную низкокалорийную диету.
Гены, влияющие на продолжительность жизни, находят экспериментально и затем пытаются понять механизм их действия. К настоящему моменту обнаружено уже несколько десятков таких генов — как у различных лабораторных животных, так и у человека.
Интересно, что использование подобных приёмов продлевало не только жизнь, но и молодость подопытных животных. Получается, что мы способны замедлить ход «часов старения». Но возможно ли эти часы остановить или вовсе повернуть их стрелки вспять? Следует заметить, что в природе «обнуление» часов происходит каждый раз в клетке, образовавшейся в результате оплодотворения. Фактический возраст яйцеклетки человека равен возрасту женщины (у животных он меньше). Сперматозоид моложе, однако и он успевает пройти ряд клеточных делений. В клетке же, образованной в результате оплодотворения, «возрастной след» родителей (укорочение теломер и появление химических маркеров старения на молекуле ДНК — перераспределение присоединённых к ней метильных групп и их количества) отсутствует полностью! Механизмы «обнуления» до сих пор не ясны. Но всё же понятно, что этот процесс проходит под действием определённых веществ, находящихся в цитоплазме яйцеклетки, и для выживания вида он чрезвычайно важен.
«Обнуление» использовал в своих ранних экспериментах по клонированию Джон Гёрдон (John Bertrand Gurdon) — британский биолог, нобелевский лауреат 2012 года. Он извлекал ядро из яйцеклетки южноафриканской водной лягушки (шпорцевой лягушки) и вместо него помещал туда ядро мышечной или кишечной клетки головастика. Пересаженное ядро перепрограммировалось под действием тех же веществ, что инициируют «обнуление» оплодотворённой яйцеклетки. Такая гибридная клетка развивалась в нормальный организм без видимых признаков преждевременного старения. Данный эксперимент опроверг гипотезу о том, что процесс взросления и дифференцировки клеток сопровождается потерей генетического материала. К тому же Гёрдон доказал, что возраст ядра-донора может быть «обнулён».
Широко известны эксперименты другого нобелевского лауреата 2012 года — японца Синьи Яманаки. Он получал индуцированные плюрипотентные стволовые клетки (ИПСК)* из фибробластов взрослого организма с использованием всего лишь четырёх транскрипционных факторов. Казалось, вот-вот наступит новая эра регенеративной медицины. Однако, увы, по ряду причин ИПСК пока не удаётся широко использовать. Например, они способны образовывать опухоли или иногда при их дифференцировке и превращении во взрослую клетку проявляются некоторые генетические нарушения, да и процент успешно перепрограммировавшихся клеток весьма невелик.
Опыты Яманаки также подтвердили гипотезу, что часы старения взрослых дифференцированных клеток могут быть «обнулены».
В экспериментах обоих нобелевских лауреатов омоложение клеток происходит с потерей специализации (этот процесс называется дедифференцировкой). Но, оказывается, процесс старения можно обратить вспять, сохранив специфические клеточные функции.
Молодые и профориентированные
Эксперименты, доказавшие возможность омоложения клетки без утраты её специфичности, проводили разные научные группы. К настоящему моменту описаны уже три способа, как заставить клетку «вспомнить молодость»: создание «молодого окружения», воздействие на определённые гены и фармакологическое воздействие.
Создание «молодого окружения». Сотрудники Стэнфордского университета супруги Ирина и Михаил Конбой (Irina Conboy и Michael Conboy) с соавторами ещё в 2005 году продемонстрировали возможность омоложения клеток и тканей под внешним биологическим воздействием. Они использовали гетерохронический парабиоз (сокращённо — ГП) — метод, при котором старая и молодая мыши сшиваются боками, подобно сиамским близнецам, создаются общая кровеносная система и пул крови. При этом, как показали эксперименты, к клеткам мышц и печени старой мыши возвращается юность. Они приобретают фенотип молодых клеток, а молекулярные метки старения пропадают. Восстанавливают свой потенциал и тканеспецифичные стволовые клетки мышц. Авторы сообщают, что даже очень старые стволовые клетки не теряют своей способности восстанавливать и поддерживать ткань, если им обеспечить молодое окружение.
В 2014 году биологи из Гарвардского университета под руководством Ли Рубин и Эмми Уэгерс (Lee Rubin и Amy Wagers), используя гетерохронический парабиоз, выявили фактор роста и дифференцировки 11 (grow differentiation factor11) — гормон GDF11, который обращает старение вспять в большинстве тканей. GDF11 синтезируется в организме, но его уровень снижается с возрастом. Журнал «Science» назвал эту работу первой демонстрацией фактора омоложения.
Другая группа из Гарварда в соавторстве с коллегами из научных центров Калифорнии тоже использовала модель гетерохронического парабиоза и сосредоточилась на эффектах, возникающих при воздействии молодой крови на мозг. Выяснилось, что в определённых областях мозга мыши стали появляться новые нейроны, которые в норме возникают только у молодых особей. (Интересно, что во всех экспериментах с гетерохроническим парабиозом молодые мыши стареют.)
Механизмы описанных эффектов на сегодняшний день до конца не ясны. Биологи предполагают, что в эти процессы вовлечены как стволовые клетки, так и различные ростовые факторы, цитокины и др.
Воздействие на определённые гены. При изучении молекулярных признаков старения, как правило, бывает не вполне ясно, что является собственно старением, а что — его следствием. Чтобы провести подобное разграничение, исследователи обычно используют генетические манипуляции с сигнальными путями внутри клетки. Возьмём, например, сигнальный путь фактора NF-?B — белкового комплекса, контролирующего транскрипцию ДНК. Он участвует в клеточном ответе на стресс, свободные радикалы, бактерии, вирусы и др. При сравнении старых и молодых тканей мыши и человека биологи обнаружили, что в постаревших тканях уровень экспрессии генов, регулируемых сигнальным путём NF-?B, повышается. Этот факт породил гипотезу о том, что сигнальный путь NF-?B необходим для поддержания возрастного фенотипа. Для проверки этой гипотезы Томас Рэндо и Говард Чэнг (Thomas Rando и Howard Chang) из Стэнфордского университета создали трансгенных мышей, в коже которых сигнальный путь NF-?B в определённый момент можно было подавлять. В своей статье в журнале «Cell» авторы пишут, что, когда мыши постарели и стали заметны такие признаки старения, как истончение кожи, был включён ген ингибитора NF-кB. Это привело к заметному омоложению клеток кожи, маркеры клеточного старения исчезли, к стволовым клеткам вернулась изначальная способность к делению и восстановились утратившиеся слои кожи.
Фармакологическое воздействие на клетки. Томас Рэндо и Говард Чэнг в той же статье в журнале «Cell» описывают эксперименты по введению старым мышам рапамицина (бактериального токсина, использующегося как иммунодепрессант) — ингибитора фермента mTOR. Этот фермент распознаёт уровень питательных веществ в клетке и регулирует синтез белков и утилизацию энергии. С возрастом его активность в стволовых клетках и клетках-предшественниках возрастает, с чем связывают старение кроветворной системы. Эксперименты показали, что рапамицин увеличивает продолжительность жизни мышей: он не только ограничивает возрастное повышение белка mTOR, но и интенсифицирует размножение стволовых клеток.
Чем же отличаются механизмы «обнуления» клеток и омоложения?
Знакомьтесь, эпигенетика
Основные механизмы перепрограммирования клеточного ядра и его дедифференцировки изучает эпигенетика — наука о процессах, которые меняют экспрессию генов, но не затрагивают последовательность ДНК. Например, разные клетки нашего организма имеют одинаковый генетический материал, но экспрессируют различные гены, что приводит к клеточной специализации (клетки печени, клетки костной ткани, нейроны и т. д.). Эпигенетические механизмы не только «руководят» клеточной дифференцировкой, но и постоянно поддерживают специализацию образовавшихся клеток. Дифференцированные клетки многократно делятся и постоянно подвергаются воздействию дестабилизирующих внешних факторов, однако сохраняют свои функции. В то же время описанные выше эксперименты демонстрируют, что статус клеток пластичен и обратим. Изучая перепрограммирование мышиных клеток (фибробластов) в индуцированные плюрипотентные стволовые клетки, исследователи выяснили, что на четвёртый—седьмой день в клетках происходит дестабилизация эпигенома, то есть общего эпигенетического состояния клетки. Но возникновение дестабилизации ещё не гарантирует, что клетки перейдут в ИПСК. Если в момент дестабилизации устранить факторы перепрограммирования, то клетки обратно превращаются в фибробласты. На этом основании возникла любопытная гипотеза, объясняющая различие механизмов дедифференцировки и омоложения. При омоложении клетки подвергаются дестабилизирующим факторам недолгое время. И возрастные эпигенетические метки (как менее устойчивые) исчезают, а эпигенетические метки, отвечающие за специализацию клетки, сохраняются. Поэтому клетки теряют только возрастные признаки.
При «обнулении» клетка подвергается длительному воздействию факторов перепрограммирования, так что стираются все существовавшие в ней эпигенетические метки. Теряются и специализация и возраст, и клетка превращается в стволовую.
Возможен и третий вариант: переход из состояния эпигенетической нестабильности сразу в клетку другого типа. Например, существуют способы превращения фибробластов в кардиомиоциты или в нейроны с использованием всего лишь нескольких транскрипционных факторов.
Опыты по омоложению клеток, как и выявление фактора омоложения — белка GDF11, безусловно, впечатляют. Может показаться, что эликсир молодости вот-вот будет найден. Но, к сожалению, не так всё просто. Сделанные открытия — лишь первые шаги. Исследователи далеки от полного понимания механизмов старения и того, каким образом его можно контролировать и регулировать. Не стоит также забывать, что эксперименты проводили на мышах. Будет ли действовать тот же фактор GDF11 как омолаживающий на человека — неизвестно. И, наконец, есть вероятность, что мобилизация стволовых клеток у старых людей инициирует возникновение злокачественных опухолей или других побочных эффектов. Поэтому, если вам предложат испить «настойки из молодой крови» или «коктейль из стволовых клеток», не спешите. Клиники молодости едва ли появятся в ближайшие десять лет.
Статья отмечена специальным призом Фонда содействия развитию передовых биотехнологий в рамках конкурса «био/мол/текст»-2014.
***
Возраст клетки
Для клеток различают три возраста:
фактический (или хронологический) — время от первого деления клетки до её смерти (совпадает с возрастом организма);
репликативный — количество делений, через которое прошла клетка;
биологический (эпигенетический) — его определяют на основе анализа 353 областей ДНК, в которых по мере старения организма накапливается большое количество эпигенетических меток — метильных групп СН3. Обычно он совпадает с хронологическим возрастом (с 96%-ной точностью). Но, например, ткань молочной железы биологически старше всего остального организма на два-три года.
***
Словарик
Экспрессия гена — процесс, в ходе которого ген преобразуется в функциональный продукт — белок (или РНК). Экспрессия гена происходит в несколько стадий: 1) транскрипция — синтез РНК с использованием ДНК в качестве матрицы; 2) трансляция — синтез белка с использованием РНК в качестве матрицы; 3) посттрансляционная модификация белка — химическое изменение белка после его синтеза (присоединение различных химических групп, разрезание и т. п.).
Эпигенетические метки (маркеры) — химические группы, изменяющие экспрессию генов, но не затрагивающие последовательность ДНК. К эпигенетическим меткам относят метилирование (присоединение к ДНК CH3-группы). Чаще всего метилирование приводит к инактивации гена (подавлению экспрессии). С возрастом распределение метильных групп в геноме меняется.
Транскрипционные факторы — белки, контролирующие синтез мРНК на матрице ДНК (транскрипцию). Транскрипционные факторы способны как повышать, так и снижать экспрессию гена.
Теломеры — концевые участки хромосом. В каждом цикле деления клетки теломеры укорачиваются. Этот феномен — один из важнейших факторов старения.
Тканеспецифичные стволовые клетки — клетки различных тканей и органов, отвечающие за их обновление (замещают погибшие клетки).
Сигнальный путь — последовательность молекул, посредством которых информация от клеточного рецептора передаётся внутри клетки. Сигнал передаётся от молекулы к молекуле в строго определённом порядке, что и позволяет говорить о сигнальном пути.
Комментарии к статье
* Индуцированные плюрипотентные стволовые клетки — клетки взрослого организма, которые с помощью генетического перепрограммирования вернули в эмбриональное состояние.